2 research outputs found

    Using Wearable Sensors to Measure Interpersonal Synchrony in Actors and Audience Members During a Live Theatre Performance

    Get PDF
    Studying social interaction in real-world settings is of increasing importance to social cognitive researchers. Theatre provides an ideal opportunity to study rich face-to-face interactions in a controlled, yet natural setting. Here we collaborated with Flute Theatre to investigate interpersonal synchrony between actors-actors, actors-audience and audience-audience within a live theatrical setting. Our 28 participants consisted of 6 actors and 22 audience members, with 5 of these audience members being audience participants in the show. The performance was a compilation of acting, popular science talks and demonstrations, and an audience participation period. Interpersonal synchrony was measured using inertial measurement unit (IMU) wearable accelerometers worn on the heads of participants, whilst audio-visual data recorded everything that occurred on the stage. Participants also completed post-show self-report questionnaires on their engagement with the overall scientists and actors performance. Cross Wavelet Transform (XWT) and Wavelet Coherence Transform (WCT) analysis were conducted to extract synchrony at different frequencies, pairing with audio-visual data. Findings revealed that XWT and WCT analysis are useful methods in extracting the multiple types of synchronous activity that occurs when people perform or watch a live performance together. We also found that audience members with higher ratings on questionnaire items such as the strength of their emotional response to the performance, or how empowered they felt by the performance, showed a high degree of interpersonal synchrony with actors during the acting segments of performance. We further found that audience members rated the scientists performance higher than the actors performance on questions related to their emotional response to the performance as well as, how uplifted, empowered, and connected to social issues they felt. This shows the types of potent connections audience members can have with live performances. Additionally, our findings highlight the importance of the performance context for audience engagement, in our case a theatre performance as part of public engagement with science rather than a stand-alone theatre performance. In sum we conclude that interdisciplinary real-world paradigms are an important and understudied route to understanding in-person social interactions

    Exploring Theater Neuroscience: Using Wearable Functional Near-infrared Spectroscopy to Measure the Sense of Self and Interpersonal Coordination in Professional Actors

    No full text
    Ecologically valid research and wearable brain imaging are increasingly important in cognitive neuroscience as they enable researchers to measure neural mechanisms of complex social behaviors in real-world environments. This article presents a proof of principle study that aims to push the limits of what wearable brain imaging can capture and find new ways to explore the neuroscience of acting. Specifically, we focus on how to build an interdisciplinary paradigm to investigate the effects of taking on a role on an actor's sense of self and present methods to quantify interpersonal coordination at different levels (brain, physiology, behavior) as pairs of actors rehearse an extract of a play prepared for live performance. Participants were six actors from Flute Theatre, rehearsing an extract from Shakespeare's A Midsummers Night's Dream. Sense of self was measured in terms of the response of the pFC to hearing one's own name (compared with another person's name). Interpersonal coordination was measured using wavelet coherence analysis of brain signals, heartbeats, breathing, and behavior. Findings show that it is possible to capture an actor's pFC response to their own name and that this response is suppressed when an actor rehearses a segment of the play. In addition, we found that it is possible to measure interpersonal synchrony across three modalities simultaneously. These methods open the way to new studies that can use wearable neuroimaging and hyperscanning to understand the neuroscience of social interaction and the complex social-emotional processes involved in theatrical training and performing theater
    corecore